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STATIONARY MODE OF EXPANSION OF A VAPOR HEATED BY RADIATION 

OR A FAST-PARTICLE FLUX 

A. V. Dobkin, T. B. Malyavina, 
and I. V. Nemchinov 

UDC 535.2.532.529.5/6 

A high-power radiation or fast-particle flux will evaporate the surface of an obstacle 
and will heat the vapor to high temperatures, the vapor then expanding with high velocity. 
A high pressure is set up at the obstacle. These phenomena have recently attracted atten- 
tion in relation to pulsed controlled fusion CF. The energy sources are mainly lasers and 
electron beams. Considerable progress has been made recently [1-7] in producing high-power 
ion beams. Flux densities of the order of 1 GW/cm 2 have been attained with pulse lengths of 
0.01-i ~sec [7]. Estimates have been made of the parameters needed to attain the conditions 
of CF using ion beams [7-10]. There is also a discussion [ii] on the scope for using a high- 
power radiation continuum for this purpose, this being emitted by strong shock waves gener- 
ated for example by shells accelerated by particle beams. 

The interaction of radiation and particle fluxes with obstacles is of interest not only 
in relation to CF but also in simulating the collisions of micrometeorites with obstacles, 
the acceleration of microscopic objects to very high speeds, research on the optical proper- 
ties and equations of state for materials under extreme conditions, diagnosis of radiation 
beams and sources, and many other scientific and engineering purposes. The heating and mo- 
tion of the vapor in general constitute very complicated nonstationary processes, which 
sometimes are two-dimensional. It is desirable to have a simple model on the other hand 
that enables one to elucidate the trends in the major parameters with the source parameters 
and the target characteristics. 

Estimates have been made [12] on the plasma parameters attained on exposing a target 
to a proton pulse for the case where the vapor has planar geometry. If the irradiation is 
sufficiently prolonged, the vapor thickness will be greater than the radius of the spot or 
radius of curvature of the target. The expansion becomes two-dimensional and the vapor 
density falls more rapidly than in the planar case. The peripheral vapor layers become 
transparent to the incident particles, which penetrate to deeper layers. The energy is de- 
posited mainly at distances r > ro, where ra is the target radius. A quasistationary plasma 
corona is produced. The evaporation rate in the target is much less than the plasma expan- 
sion speed, and the main pant near the target is played by heating by absorption, while far 
away cooling predominates as a result of the expansion, while there is ongoing acceleration 
and passage through the speed of sound. This picture has been described in [13, 14] for 
laser radiation, and the parameters of the moving radially symmetrical plasma were derived 
for the case of all-round heating due to the inverse bremsstrahlung of the photoelectric 
effect. In [15] a study was made of the parameters of the stationary corona when laser 
radiation is absorbed in a layer with a concentration close to critical, while the energy 
is transferred to deeper layers by electron thermal conduction. 
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There are also studies of the effects of high-power continua on obstacle heating when 
the vapor expands in planar geometry [16-18]. A stationary state can also occur [19] in 
all-round irradiation of a spherical target by nonequilibrium continuum radiation. By 
analogy with [13, 14, 19] we examined the stationary corona for the case where the bombard- 
ment is by ions or radiation fluxes and the energy transfer near the sphere occurs under 
conditions close to those of radiative thermal conduction. 

i. The vapor density at the surface of the target is high when a sufficient radiation 
flux density is incident on a sphere from vacuum, and the Rosseland average radiation range 
in the vapor is l R < ro; the energy flux is then described by 

q = - -KOT/ar ,  K = ( i 6 / 3 ) a T ~ ,  (1 .1 )  

where K is the radiative thermal conductivity, o is Stefan's constant, and T is temperature. 
The speed u of the vapor expansion increases away from the sphere, while the vapor density 
p falls more rapidly than as I/r a. The approximation IR ~ T~p -b applies in the region of 
multiple ionization, where a ~ i and b ~ 2; as T increases and 0 falls, the vapor becomes 
more transparent and l R becomes comparable with r. Here the radiative conduction equation 
no longer applies. The rapid increase in l R with r means that not far from the point r = 
r T where ~R = r one can neglect the radiation absorption. In the transition zone near r T 
strictly speaking one should solve the complete transport equations, but as this zone is 
narrow we link up the region of almost complete transparency to that of opacity by means 
of an approximate condition of continuity for the source radiation fluxes with temperature 
T~ and the one-way flux in the optically dense zone 

q = ~ T  4 - -  ( i / 2 )  q = ~T%. ( 1 . 2 )  

The stationary motion and heating of the spherically symmetrical corona are described by 

p u ~  = p . u . r ~  = M/4~ ,  dp + pudu = 0, (1 .3 )  

M (k + u~/2) + F = M ( h .  + u~/2) -+- F . ,  

where p i s  p r e s s u r e ,  h e n t h a l p y ,  F the  t o t a l  e n e r g y  f l u x  t h r o u g h  the  s p h e r i c a l  s u r f a c e  o f  
r a d i u s  r d i r e c t e d  t owards  t he  s u r f a c e ,  and M i s  the  t o t a l  mass f low r a t e .  The s u b s c r i p t  * 
d e n o t e s  the  p a r a m e t e r s  a t  t he  p o i n t  where the  p a s s a g e  t h r o u g h  the  speed  of  sound o c c u r s .  

We c o n s i d e r  the  c o n d i t i o n s  f o r  phase  t r a n s i t i o n  i n t o  the  s u b s o n i c  e v a p o r a t i o n  wave a t  
the  s u r f a c e  o f  the  s p h e r e :  

pwu~r~ M / 4 n ,  Po Pw + ~ (1 .4 )  

i (h~ + ~ / 2 )  + F~ = --  MQ~, h~ = h (Y~, p~), r~ = T. (p.). 

Here Tv is the equilibrium phase-transition temperature, while subscript w relates to the 
parameters behind the evaporation wave, po is the pressure ahead of the wave (in the un- 
evaporated material), and Qv is the heat of evaporation. If Po is above the critical value 
in the van der Waals sense we cannot talk of equilibrium between the two phases. However, 
the energy may be deposited mainly in the fairly low-density gaseous layers, in which case 
we can introduce the nominal temperature T v and use Eq. (1.4) to avoid detailed analysis 
of the region of dense material with its complete equation of state. 

The optical and thermodynamic properties of the hot vapor are given as tables (we use 
the tables of [20-22] for aluminum, carbon, and bismuth). We represent them as 

pv = N ( T ,  p )R 'T ,  h = C(T, p ) R ' T  = pv~/(~ - -  t),  (1 .5 )  

IR = l~ (T, p), B '  = B / A ,  v = tlp,  

where R is the universal gas constant, A is the atomic weight of the substance, v is spe- 
cific volume, and y is the effective adiabatic parameter. 

The equation of state was also used in the differential form 

dp/p = Bo(dp/p) + BT(dT/T),  ( 1 . 6 )  

B~ = t - I - 0 1 n N / 0 1 n p ,  BT = I + 0 1 n N / 0 1 n  T. 

From Eqs. ( 1 . 3 )  and (1 .6 )  we g e t  

y [  B o . . . .  \ g -~  + B  o ~ - ,  g = u  2, S = r  2. (1 .7 )  
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It follows from Eq. (1.7) that there is a special point at which the following conditions 
are obeyed: 

T~const ' 
g 

~ I  ~ 

TK ~ BT 
-- �9 (1.9) qS1/2 2 B o 

From Eq. (1 .8 )  we g e t  t h a t  t he  t r a n s i t i o n  t h r o u g h  t he  speed o f  sound ( h e r e  i s o t h e r m a l )  r e -  
quires that the followsing relation is obeyed in the sonic section: 

r ,  ( d T / d r ) ,  = ~ T , ,  % = 2 B p / S ~ .  (1 .10 )  

We have k = 2 for constant values of N, C, and y. 

2. When the vapor is heated by a flux of fast ions, we assume that the irradiation is 
spherically symmetrical. Particles moving along the radius to the target are retarded, so 
the energy e of an individual particle decreases, but the total particle flux remains con- 
stant: 

F/e  :- F , / e . .  ( 2 . 1 )  

The e l e c t r o s t a t i c  and e l e c t r o d y n a m i c  e f f e c t s  a r e  n e g l e c t e d ,  s i n c e  i t  i s  assumed t h a t  the  i on  
beam i s  n e u t r a l i z e d  ( t h e  c o n t r i b u t i o n  from the  e l e c t r o n s  to  the  o v e r a l l  e n e r g y  b a l a n c e  can 
be n e g l e c t e d ) .  The i n i t i a l  beam d i v e r g e n c e  and the  s c a t t e r i n g  a r e  c o n s i d e r e d  as  n e g l i g i b l e ,  
i . e . ,  t he  i on  m o t i o n  i s  r a d i a l l y  s y m m e t r i c a l .  I t  i s  r e a l i s t i c  f o r  such  c o n d i t i o n s  to  be 
a p p r o x i m a t e d  f o r  i o n s  [ 7 ] .  C o l l i s i o n s  w i t h  f r e e  and bound e l e c t r o n s  a r e  i n c o r p o r a t e d  in  the  
p a r t i c l e  r e t a r d a t i o n .  

The e n e r g y  l o s t  by a f a s t  i on  ( d e / d r )  e keV/cm by c o l l i s i o n  w i t h  f r e e  e l e c t r o n s  i n  a 
Maxwel l i zed  p lasma i s  d e t e r m i n e d  [23,  24] by 

- -  (ds/dr)e : kl  Z---P L r  k I = i .44.10Sz~A~/A,  ( 2 . 2 )  

where z~ is the ion charge (z a = 1 for protons), while A a and A are the atomic weights of the 
particle and the plasma ions; z(T, p) is the degree of ionization of the vapor, which is 
given by the table; the particle energy c is expressed in keV, and r = 1 when the particle 
velocity is larger than the electron thermal velocity and r < 1 otherwise, when the thermal 
electrons may give up part of their energy to the fast particle [23, 24], with L the 
Coulomb logarithm, which incorporates collisions and waves in the plasma [25]. 

The following relationship is used for the energy lost by fast particles at bound elec- 
trons (de/dr) i in keV/cm: 

(d~/dr) i ~ /(e)k2p(zA - -  z)/zA, ( 2 . 3 )  

where ka is a constant for a particular target (ka = 3.7'104) for aluminum), f(r is the ex- 
perimental energy-loss curve for the cold unionized material [26], and z A is the number of 
electrons in an atom of the material (z A = 13 for aluminum). The factor (z A- z)/z A in- 
corporates the fact that the energy loss is proportional to the number of electrons in a 
plasma ion. This approach agrees with Bethe's formula [27] for high particle energies, 
where the velocity exceeds the velocity of the electrons in a plasma ion and is in accord- 
ance with the Lindhard--Scharff model [28] or Firsov's theory [29] for low ion energies. 

We use the system of equations (1.3) and (1.4) for the case of particles, while the 
equation of state is put as 

dh/h = A p d p / p  - -  A f lp /9 ,  A,, = (Bp/B~)AT - -  Ap,  (2 .4 )  

A p  = A~/B~, A~ = I + 01n c /Oln  T, Ap = 0 I n  c /Oln  9. 

I n s t e a d  o f  ( 1 . 7 )  we g e t  

' A h ~  ( S d F  ) S d g ( i  S -7 - -A  + ~,-~7 \ - - ~ - ~ - + A ~ h  (2 5) 
2 dS - - ? - - 1  P ~ --  ' 

which has a singular point at which the following conditions are obeyed: 

v-Z--A + A ~ + = 0 ;  (2 6) i ?_ip 
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dF At, 
d S -  S h M .  

We introduce the differential adiabatic parameter Yd from 

p dp S=const= YAv W = -V- ~---P I + ('% -- t) V " 

Conditions (2.6) and (2.7) become 

( 2 . 7 )  

(2.8) 

2 * y - -  I , ,  p ,  2 
g , = u , = g d ~ h , =  ~ ' d ~ ,  = C , "  ( 2 . 9 )  

Therefore, the flow speed is equal to the adiabatic speed of sound at the special point. 
At this point there is a definite relation between the radius r, and the differential 
particle range I = c/(dr 

r ,  = ~$l, ,  k 1 =.2A*/O l + )0, l ,  = e , / ( k ~  4- k~), ( 2 . 1 0 )  

E =- O~/h , ,  ~ = 1 q- (V, - -  1) V~/2y, .  

F o r  f i x e d  N, C, a n d  7 we h a v e  

~,l = 4 (? q- t q- 2Qv/h , )  -1, Y = ?d. 

We take the given values of the particle energy r and the total energy flux Fo at a large 
distance from the sphere as boundary conditions. 

3. We integrate (1.3) with (i.i) for radiation or (2.1)-(2.3) for particles from the 
singular point subject to conditions (1.8)-(1.10) or (2.8)-(2.10), which involves an expan- 
sion in terms of the small parameter. The system and the conditions at the special point 
may be represented in dimensionless form by referring all the parameters to the values in 
the sonic seation: ~ = p/p,, ~ = p/p*, etc. For convenience we omit the bars over the di- 
mensionless quantities. The system takes the following form for radiative conduction: 

2 ~ ' * S ~ -  ~2K--~/'gBo 1 / - '~, 

pg~/~s = 1, h + (n - -  l) g + ~ = F (Z + ~), 

At the sonic point we have 

h = p = p ~ u =  g = f = S  = c p = ~ =  K =  t. ( 3 . 1 )  

For 18- i[ << i we put 

g - -  I = x ( S - -  1), T - -  I = ( s  1). ( 3 . 2 )  

The dimensionless radiative thermal conductivity is represented in the power form K = 
k-a0B near the special point, while we neglect the changes in ~, ~, y, B~, and BT; the slope 
of the integral curve is given by the quadratic equation 

ax ~" + bx + c  = O; ( 3 . 3 )  

2a = I q- (A~/2), r = ii(% q- ~1), ( 3 . 4 )  

b = 01 - -  t)co -4- ([~ - -  (EA~/2) q- Ao( t  - -  co - -  e))/2,  

c = - - (E -~ 1)/2 ~- ~ + (a  ~- co)(~AT/2 - -  Ap). 

The following is the system of dimensionless equations and the expansion at the special 
point for proton beams: 

~ [dF S OI + X) t] dS 
21 (h __ r dg = - ~  h A v S ' 

_ _  ~_ zpLCD 7~* [ z a - z  I 
dS 2Sl1~ a, 

(y,  - -  t) �9 ., 
~2 ' t ,  ( 7 - - 1 ) '  q ) =  ~ ( ~ ; * a / ~ l a ) '  z A = - z f f z , ,  g = u ' ,  S = r  2, 
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kl=kl  , , ,  ks=k p, 1 - -  

At  t h e  s o n i c  p o i n t  we h a v e  a n  a d d i t i o n  t o  E q .  ( 3 . 1 )  t h a t  ~ = z = L = ~ = 1 ;  f o r  IS --  1 1 <<1 
we h a v e  i n s t e a d  o f  Eq .  ( 3 . 2 )  t h a t  

g - - l = x ( S - - l ) ,  F - - I = A ( S - - I ) ,  A = A ~ / ( n + Z ) .  

The dimensionless degree of ionization is represented in the power form z = h-ap E near the 
special point, while the changes in T, ~, ?d, ?, A~, L, ~ can be neglected. To determine the 
slope of the integral curve we again get Eq. (3.4), where the coefficients are as follows: 

2a = ~, b = -- (ko + A~)/2+kh (~ - -  t), 

/ ~ = [ ] t ~ , ) l  ~ , k ~ - -  , k* . . . .  = * + k * "  kl + ~ kl 2 

4. We give some results on the plasma parameters for protons of energy 1 MeV (Fig. 
la) and continuum radiation with temperature T= = 24 eV (Fig. ib) acting on an aluminum 
sphere of radius ro = 1 cm. In the first case, the particle flux density qo at the target 
in the absence of vapor screening will be 22 GW/cm a, while in the second it is qo = ~T~ = 33 
GW/cm 2. The values of all parameters were referred to their values in the sonic section. 
About half the beam energy is absorbed in the supersonic region for the protons, and corre- 
spondingly e, = 0.5 MeV. However, at a distance r = 2r, the particle energy differs by only 
10% from co. The temperature of the supersonic zone differs only slightly from T, = 20 
eV. Near the surface there is a narrow heating zone, and at the surface of the body there 
is the pressure po = 1.46 GPa, which exceeds p, by a factor 2.5. The time required for the 
vapor with speed u, = 23 km/sec to expand to a distance of the order of the radius of the 
sphere is about 0.4 ~sec. This may be taken as a bound for the time required to establish 
the stationary state. We use the Rosseland radiation range in the critical section to esti- 

O mate the thermal-radiation flux qr, which constitutes about 30-50% of the incident energy, 
and therefore the actual plasma temperature may be appreciably lower than that given. In 
the radiation case, T, is also 20 eV, while the pressure at the surface is somwhat higher 
than that for protons (about 3.9 GPa). Therefore, one expects that the energy loss by 
radiation with a proton beam in that case, as in [30], will be compensated by the additional 
evaporation and heating by the radiation from the plasma incident on the target, and the 
pressure will not be very different from the case where reemission is negligible. 

We performed systematic calculations for numerous different cases analogous to that 
described above, including for conditions where the reemission in the presence of particles 
is small. Qualitatively speaking, the parameter distribution in each of these cases was 
analogous to that given in Fig. i. 

In the form shown in Fig. Ib, l,/r, = 0.2, which shows that the approximation of (i.i) 
with the condition of (1.2) is permissible. As T= and ro increase, the ratio characterizing 
the degree of opacity decreases and the approximation becomes more accurate. As p falls as 
r increases, while ~R increases very rapidly, the point r T where l R = r T differs only 
slightly from ro and r, (in the present case r, = 1.15 cm and r T = 1.42 cm). The flux 
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density of the energy escaping from the optically dense zone can be determined from q+ = 
oT ~ + q/2 at r = rT; in the present example, the proportion of the energy reemitted back- 

wards is ~ = q+/qo = 43%. 

Figure 2 shows the dependence of T, in eV on qo in MW/cm 2 for protons with eo = 1 MeV 
(curve i) and r = i00 keV (curve 2), as well as for the radiation from a neodymium laser 
(photon energy Co = 1 eV) in accordance with the calculations of [14] (curve 2), and for 

radiation in the continuum (curve 4). Figure 2a corresponds to an aluminum sphere of radius 
ro = 1 cm, while Fig. 2b corresponds to ro = 0.i cm. There is no curve 4 in Fig. 2b because 
in that case the plasma was transparent and the radiative conduction approximation was in- 

correct. The plasma heating by protons with co = I00 keV was close to the heating by the 
neodymium laser at the same qo. Heating by the continuum corresponded approximately to 
heating by protons with r = 1 MeV. The proton range increases with energy, and the energy 
of the beam is deposited in a larger mass for the same flux density, which reduces the tem- 

perature attained. 

Parts a and b of Fig. 2 show the dependence of Po in MPa on qo in MW/cm 2 also for ro = 

1 and 0.i cm correspondingly, while curves 1-4 relate to the same cases as in Fig. 2. As co 
increases or ro decreases, the target becomes surrounded by a denser plasma and the pressure 
is higher. The following approximations apply for protons acting on an aluminum sphere at 

temperatures up to 30 eV: 

O Q 010 - - 0 , 4 8 0 , 7 5  ~ ,~ 0 ,4  0 ,4  - - 0 , 6  Po ~.~qo ro o , T ,  ( 4 . 1 )  ~ 0 , 0 ~ 0  rO ~0  �9 

For continuum radiation we have 

0 ,25  0 , 0 1 5  
P o - -  0"4q~'~ ~ T ,  = 8qo ro (r  o ~ l c m ) ,  ( 4 . 2 )  

a n d  f o r  a l a s e r  [ 1 4 ]  we h a v e  
~ ~ 0 .6 7  - -0  2I  0 42 ~ 0 ,35  0 .17  - - 0 . 3 4  

Po v . v J q o  ro " Co" , T , = ~ u q o  ro eo �9 ( 4 . 3 )  

Here the units are as follows: Po in GPa, qo in GW/cm a, ro in cm, T, in eV, for protons the 
energy go is in MeV, while for laser radiation the photon energy co is in eV. Equations 
(4.1)-(4.3) enable one to compare the heating of the dense plasma by the different sources. 

Figure 4 shows the dependence of the energy loss by radiation ~ on qo in MW/cm=; here 
$ = q~/q,, while q$ is the radiation energy flux in the critical section, which is given 

approximately by 

F* r *  
�9 4 * * q~ = o T . r , / l R  for - ~  < i or qr = aT~  for --77 > I. 

l H / R 

Curves 1 and 2 correspond to ro = 1 and 0.i cm with co = 1 MeV, while curves 3 and 4 corre- 
spond to the same ro with co = 0.i MeV. For co = 0.i MeV, the corona is optically thin in 
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this temperature range, while it is optically thick for co = 1 MeV. Correspondingly, the 
role of reemission is small for low proton energies, while it can become important at high 
ones, and therefore these estimates need to be refined by direct numerical calculation with 
detailed allowance for the radiation spectrum, as has been done in [18] for the continuum 
radiation and in [30] for laser radiation under the conditions of planar geometry on the 
basis of detailed tables [20-22]. The same applies to continuum radiation for small ro and 

low T~. 

At the higher temperatures, factors such as the electron thermal conduction may become 
important. For example, at qo = 5 "I0~ GW/c m2, eo = i0 MeV, and ro = 0.4 cm, where T, = i00 
eV, the fluxes due to electron thermal conduction constitute about 30% of qo, and they are 
of the same order as the radiation loss. With these parameters for the proton beam, the 
pressure on the target Po is about 1012 Pa, while the density in the critical section is 
p, = 0.i g/cm 3. 

It is of interest to establish how the target material affects the plasma parameters. 
Figure 5 gives Po in MPa for the surface of a sphere with ro = 1 cm in relation to qo in 
MW/cm 2 for targets consisting correspondingly of carbon, aluminum, and bismuth. Crosses 
denote the points for C and A1 for which the optical opacity condition begins to be obeyed, 
l~/r, = 0.3; for Bi, it is obeyed already at qo = 4 MW/cm ~. The pressures at the targets 

of aluminum and bismuth differ only slightly. For C the Po(qo) dependence is sharper than 
that for A1 or Bi. The points on the curves denote the qo at which T, = i0 eV. 

Therefore, sufficiently prolonged irradiation by a high-power proton flux or exposure 
to continuum radiation can result in quasistationary heating conditions for the dense and 
hot plasma, which moves at high speed, and the same applies to laser radiation. In some 
cases the plasma emits intensely. The stationary state may be valuable in plasma diagnosis 
and in various applications. A similar state can occur when an electron beam is used. A 
simplified analysis has been given in [31]. However, the neutralization problem may here 
be more difficult than that for ions, and electrodynamic effects may be more important, as 
may particle scattering. 
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